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Admixture and breed traceability 
in European indigenous pig breeds 
and wild boar using genome‑wide 
SNP data
Christos Dadousis1*, Maria Muñoz2, Cristina Óvilo2, Maria Chiara Fabbri1, José Pedro Araújo3, 
Samuele Bovo4, Marjeta Čandek Potokar5, Rui Charneca6, Alessandro Crovetti1, 
Maurizio Gallo7, Juan María García‑Casco2, Danijel Karolyi8, Goran Kušec9, 
José Manuel Martins6, Marie‑José Mercat10, Carolina Pugliese1, Raquel Quintanilla11, 
Čedomir Radović12, Violeta Razmaite13, Anisa Ribani4, Juliet Riquet14, Radomir Savić15, 
Giuseppina Schiavo4, Martin Škrlep5, Silvia Tinarelli7, Graziano Usai16, Christoph Zimmer17, 
Luca Fontanesi4 & Riccardo Bozzi1

Preserving diversity of indigenous pig (Sus scrofa) breeds is a key factor to (i) sustain the pork chain 
(both at local and global scales) including the production of high-quality branded products, (ii) enrich 
the animal biobanking and (iii) progress conservation policies. Single nucleotide polymorphism (SNP) 
chips offer the opportunity for whole-genome comparisons among individuals and breeds. Animals 
from twenty European local pigs breeds, reared in nine countries (Croatia: Black Slavonian, Turopolje; 
France: Basque, Gascon; Germany: Schwabisch-Hällisches Schwein; Italy: Apulo Calabrese, Casertana, 
Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda; Lithuania: Indigenous Wattle, White Old Type; 
Portugal: Alentejana, Bísara; Serbia: Moravka, Swallow-Bellied Mangalitsa; Slovenia: Krškopolje pig; 
Spain: Iberian, Majorcan Black), and three commercial breeds (Duroc, Landrace and Large White) were 
sampled and genotyped with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. 
A dataset of 51 Wild Boars from nine countries was also added, summing up to 1186 pigs (~ 49 pigs/
breed). The aim was to: (i) investigate individual admixture ancestries and (ii) assess breed traceability 
via discriminant analysis on principal components (DAPC). Albeit the mosaic of shared ancestries 
found for Nero Siciliano, Sarda and Moravka, admixture analysis indicated independent evolvement 
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for the rest of the breeds. High prediction accuracy of DAPC mark SNP data as a reliable solution for 
the traceability of breed-specific pig products.

The process of domestication of pigs and the spread of the species around the world has been the subject of some 
studies in the recent past1,2, demonstrating that pig domestication involved multiple pig populations including 
wild boars3,4. The domestication aspects have often been investigated by the study of mitochondrial DNA, while 
genetic diversity was initially studied using simple sequence repeat (SSR) and amplified fragment length poly-
morphism (AFLP) in intensively selected breeds5,6 but also in indigenous populations of limited diffusion7–10. 
The development of single nucleotide polymorphisms (SNPs) panels with SNPs distributed across the entire 
genome provided new opportunities to investigate and decipher the complex relationship between indigenous 
pig breeds11,12. This is a topic that has to be taken on in order to enhance the safeguard of local pig populations. 
Considering the region of Europe and Caucasus, the Food and Agriculture Organization (FAO) identified 48 
already extinct pig breeds, representing ~ 20% of the global pig breeds. Among the existing breeds in the region, 
14 breeds are classified at critical risk of extinction, 5 are in a critical-maintained status, 24 are endangered, 11 
are defined as endangered-maintained and 6 in a vulnerable situation (http://​www.​fao.​org/​dad-​is/​risk-​status-​
of-​animal-​genet​ic-​resou​rces/​en/). This means that more than 25% of the local European pig population is in a 
worrisome demographic status. The improvement of breeding and conservation programs for these indigenous 
breeds is becoming extremely important for multiple reasons. Firstly, it is well known that indigenous breeds 
are well-adapted to their local environment and are a unique genetic pool that might be essential, not only as pig 
biobank13, but also for the sustainability of the global pork chain. In addition, local pig farming is strongly related 
to niche products of high quality, which contribute to the local economy development and sustainability14. No 
less important is the increasing demand for organic and high welfare animal-based food products15, which has 
led consumers to prefer local breed products that are considered more nutritious, tasty, healthy and safe16 and 
because animals are usually reared freely and outdoors17.

It is important to note that the European pork production amounts on 21—22 thousand tonnes of meat per 
year (https://​ec.​europa.​eu/​euros​tat/​datab​rowser/​view/​tag00​042/), heavily based on the use of cosmopolitan pig 
breeds. Moreover, Germany, Spain, France, Poland, and the Netherlands are the largest consumers in Europe. In 
this context, a powerful system to ensure pig breed traceability is required, that will enable products from pure 
local breeds to be clearly differentiated from their cosmopolitan counterparts and controlling fraud. Currently, 
the administrative traceability is not infallible, and the possibility of errors and frauds exists. The use of genetic 
markers could overcome these limits18. Microsatellites and SNP have been mainly used for traceability purposes, 
with the latter nowadays prevailing over the former, presenting many advantages such as easier laboratory han-
dling, low mutation rate, and better suitability for standardization19. Several SNP based studies, often using a runs 
of homozygosity approach, aimed to detect candidate genes which allowed the identification of a specific breed20 
and/or focused on genomic regions which discriminated populations from each other21. A pairwise fixation 
index (FST) distances method was used to differentiate indigenous from commercial pig populations11,22,23, and 
to determine breeds belonging to different production systems24. Moreover, SNP detection from genome wide 
sequencing was used to develop a SNP chip for discriminating between purebred or crossbred Iberian origin 
of live pigs, meat and dry-cured pig products25. Other methods applied to distinguish breeds from each other 
are the investigation of the proportion of ancestry shared among the breeds26,27 and the clustering of genetically 
related individuals by discriminant analysis28. This latter method has been applied to trace sheep, using sets of 
SNPs able to separate breeds belonging to different geographic areas29 and for assigning animals to their true 
population30. A similar approach has been applied in cattle, where Dimauro et al.31 argued that the canonical 
discriminant analysis was able to efficiently distinguish the three breeds studied (Holstein, Brown Swiss, and 
Simmental). Moreover, various other methods exist in human32 and animal studies33–35 to identify a small set of 
ancestry informative SNPs, derived from genotyping or sequence data, that are helpful for population identifica-
tion and breed traceability.

To the best of our knowledge no similar studies have been performed in pig breeds. In this work, we describe 
a comprehensive approach of using principal component analysis (PCA), admixture and discriminant analysis of 
principal components (DAPC) to evaluate pig breeds (indigenous and commercial) and wild boars traceability 
via the whole set of SNPs revealed by the GGP Porcine HD Array. The last two methods allow to predict the 
breed of origin (DAPC), and the proportions of ancestry per pig (admixture analysis).

Results
Population stratification and ancestry.  Analyses were based on 1,186 pigs and 40,364 SNP (Table 1). 
A PCA analysis was applied on the matrix of 1,186 pig genotypes. The scatterplots of the first two and all of the 
first five PCs in pairwise combinations are shown in Fig. 1a,b. Mora Romagnola and Duroc were clearly distin-
guished from the rest of the breeds (bottom-right quarter, Fig. 1a). Moreover, PC1 placed closely the Turopolje, 
Alentejana, Iberian, Swallow-Bellied Mangalitsa, Majorcan Black and Basque (left part, Fig.  1a). Lithuanian 
White Old Type and Large White were also separated in the opposite direction of PC1 (top-right quarter, Fig. 1a) 
and were closely positioned. In close proximity to those two was the Landrace breed. Considering PC1 and 
PC2, pigs belonging to the rest of the breeds were largely overlapped showing considerable within breed varia-
tion. Despite this, Gascon was almost clearly differentiated and this differentiation was more profound in PC5 
(Fig. 1b). Considering further axes, Basque and Apulo Calabrese were also distinguished (PC3 and PC5, respec-
tively), while Turopolje was further separated. It should be noted however, that the eigenvalues where low, with 
the first 2 eigenvalues accounting cumulatively ~ 9.3% of the original variability, while the first 697 eigenvalues 
captured ~ 90% (Fig. 1c).

http://www.fao.org/dad-is/risk-status-of-animal-genetic-resources/en/
http://www.fao.org/dad-is/risk-status-of-animal-genetic-resources/en/
https://ec.europa.eu/eurostat/databrowser/view/tag00042/
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Complementary to PCA, an admixture analysis was carried out, to estimate the proportion of ancestries per 
pig (Fig. S1). After cross-validation (CV), the model with 24 distinct groups was kept for further analysis (Fig. 2a). 
Results could be summarized in four main points (Fig. 2b, Fig. S1, S2 and Table S2): (i) in general, Alentejana, 
Basque, Gascon, Iberian and Mora Romagnola as indigenous breeds, and Duroc as commercial breed, showed 
the lowest levels of introgression, (ii) Casertana, Swallow-Bellied Mangalitsa and Turopolje consisted mainly of 
two group ancestries, (iii) the Italian breeds Nero Siciliano and Sarda showed a mosaic of different ancestries 
and (iv) Wild Boar ancestry contribution was mainly found in the Alentejana, Black Slavonian, Iberian, Nero 
Siciliano, Sarda and Swallow-Bellied Mangalitsa breeds.

Discriminant analysis.  Scenario 1 (semi‑supervised learning).  The overall successful assignment of pigs 
in breed of origin of the DAPC, averaged over the ten replicates, was 0.98 [0.967, 0.996] (Table 2). The number 
of PCs kept for DAPC ranged from 100 to 250 (52.4 and 69.4% of the original variance captured from the PCs, 
respectively). However, the number of PCs selected only marginally influenced the assignment success. The as-
signment success varied among breeds, with Black Slavonian, Cinta Senese, Krškopolje pig, Lithuanian White 
Old Type, Moravka, Nero Siciliano and Turopolje having < 100%, and the remaining breeds showing 100% ac-
curacy (Fig. 3). The lowest value was observed for Black Slavonian (86%) with some pigs assigned to either as 
Cinta Senese or Turopolje (6 and 8%, respectively).

In general, a positive effect of the sample size on the correct assignment of the DAPC model was found 
(Fig. 4). Although the mean model accuracy was slightly influenced by sample size, implying the robustness of 
the DAPC analysis, increasing sample size produced higher mean accuracies and reduced variance.

Scenario 2 (un‑supervised learning).  In the second scenario, VAL sets consisted of separate breeds and the 
evaluated breed was entirely excluded from the TRN set, hence the pigs were assigned to the rest of the 23 breeds. 
Results (Fig. 5) could be summarized in the following points: (i) some breeds were 100% assigned to only one 
breed (Alentejana, Apulo Calabrese, Basque, Bísara, Casertana, Gascon, Iberian, Krškopolje pig, Nero Siciliano 
and Turopolje), (ii) Cinta Senese, Duroc, Landrace, Large White, Majorcan Black, Mora Romagnola, Moravka, 
Sarda, Schwabisch-Hällisches Schwein, Swallow-Bellied Mangalitsa and Wild Boar were assigned to two breeds, 
(iii) Black Slavonian, Lithuanian Indigenous Wattle and Lithuanian White Old Type were assigned to three 

Table 1.   Breed name, type, country of origin and number of pigs analysed before (pre-) and after (post-) 
quality control (QC) per breed.

Breed name Country of origin N. pre-QC N. post-QC

Indigenous

Alentejana Portugal 48 48

Apulo Calabrese Italy 53 53

Basque France 39 39

Bísara Portugal 49 49

Black Slavonian (Crna Slavonska) Croatia 49 49

Casertana Italy 55 53

Cinta Senese Italy 54 54

Gascon France 48 48

Iberian Spain 48 48

Krškopolje pig Slovenia 52 52

Lithuanian Indigenous Wattle Lithuania 48 48

Lithuanian White Old Type Lithuania 48 48

Majorcan Black Spain 48 48

Mora Romagnola Italy 48 48

Moravka Serbia 50 50

Nero Siciliano Italy 50 48

Sarda Italy 49 48

Schwäbisch-Hällisches Schwein (Swabian Hall pig) Germany 51 49

Swallow-Bellied Mangalitsa Serbia 50 50

Turopolje Croatia 50 50

Commercial

Duroc Italy, Spain 53 53

Landrace Italy, Spain 52 52

Large White Italy, Spain 52 50

Wild

Wild Boar Finland, Greece, Hungary, Italy, Spain, Poland, Russia, 
The Netherlands, Tunisia 160 51
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Figure 1.   Results of the principal component analysis using the genotypes of 1,186 pigs: (a) Scatterplot of 
the first two principal components (PCs), (b) pairwise scatterplots of the first five PCs and (c) variance and 
cumulative variance explained by the PCs.
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Figure 2.   Results of admixture analysis: (a) fivefold cross-validation minimum error from K = 2–24; (b) 
summary per breed of admixture ancestries at K = 24.

Table 2.   Summary results of the DAPC model on the complete dataset. nPCs = number of principal 
components selected for the DAPC model; VarPCs = percentage of original variance explained by the selected 
principal components. The total number of pigs was 1,186, the number of pigs in the TRN set was 944, and the 
number of pigs in the validation set was 242.

Replicate Assignment success, % nPCs VarPCs, %

rep1 0.983 100 0.524

rep2 0.988 200 0.646

rep3 0.975 100 0.525

rep4 0.979 200 0.649

rep5 0.992 100 0.526

rep6 0.988 100 0.526

rep7 0.996 250 0.695

rep8 0.967 200 0.649

rep9 0.992 200 0.646

rep10 0.975 250 0.694
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Figure 3.   Heatmap of the DAPC assignment in the semi-supervised scenario with percentage of correct 
assignment per breed (in a scale of 0–1). Heatmap was constructed using the R36 package gplots37 and the 
function heatmap.2.

Figure 4.   Boxplot of the overall successful assignment over different sampling (S) proportions of the data (30 to 
100%) using DAPC. Median (black horizontal lines within the boxplots) over ten replicates (black dots).
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breeds, (iv) when the evaluated set of pigs was assigned to more than one breed, Sarda always appeared as one 
of the assigned breeds, so presenting mostly the highest assignment rate (except in the case of Black Slavonian, 
Lithuanian White Old Type and Swallow-Bellied Mangalitsa), (v) Alentejana was 100% assigned to Iberian and 
the other way around. That was the only case found of such a relationship between two breeds. For instance, 
Apulo-Calabrese, Basque, Bísara, Casertana, Krškopolje, and Nero Siciliano matched 100% to Sarda, but Sarda 
pigs were aligned only to Moravka and Nero Siciliano, (vi) Wild Boar was assigned mainly to Sarda and a small 
number to Nero Siciliano. The second most frequent breed to be assigned was Moravka with Black Slavonian, 
Landrace, Sarda, Schwabisch-Hällisches Schwein and Swallow-Bellied Mangalitsa being assigned to this breed.

These results were, in general, consistent and the sample size in the TRN set only marginally influenced the 
assignment of the breeds (Fig. 6). It is interesting that even with 30% of the dataset (~ 340 pigs), assignments were 
fairly consistent with results obtained utilizing the full dataset (~ 1,138 pigs). Sarda was in all subsets the breed 
mostly assigned. The percentage of classification of a specific breed to Sarda was either increased or decreased 
with an increasing sample size. For example, the proportion of the Black Slavonian classified as Sarda was medium 
(~ 40–50%) at a small sample size (30–60% of the data) and reduced to 10–20% with accumulated data, with the 
majority of the Black Slavonian pigs being assigned to Cinta Senese (~ 70–80%). Similarly, Lithuanian White 
Old Type had a ~ 40% assignment to Sarda and ~ 50% to Large White with ~ 340 pigs in the TRN set, and this 
ratio changed to 10–90% (Sarda and Large White, respectively) when all pigs from the remaining 23 breeds were 
considered in the TRN. In contrast, the percentage of Wild Boars assigned to Sarda was increased from 50 to 
80% when increasing the sample size. The relationship between Alentejana – Iberian was not influenced in any 
scenario, resulting in 100% assignment of pigs of one breed to the other in all the cases.

Discussion
Nowadays, modern pig farming worldwide is mostly highly intensive, utilizing few commercial breeds undergo-
ing intense selection. Nevertheless, successful applications of indigenous pig farming exist, perhaps with the most 
prominent example being the Iberian pig in Spain. Disease outbreaks, such as the African swine-fever, threaten 
global pig production. Indigenous pig breeds consist of a unique genetic pool that might be proved of a great 
importance in the future, not only for the sustainability of the global pork chain but also for human research as 
in the case of the pig biobank13,39. However, indigenous pig farming is greatly based on outdoor rearing, making 
it vulnerable not only to disease outbreaks but also to natural disasters.

Figure 5.   Heatmap of the DAPC assignment in the un-supervised scenario with percentage of external 
assignment per breed (in a scale of 0 to 1). Heatmap was constructed using the R36 package gplots37 and the 
function heatmap.2.
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Figure 6.   Heatmaps of the DAPC assignment in the un-supervised scenario, in increasing sample size, of 
percentage of external assignment per breed (in a scale of 0 to 1); x-axes show the observed and y-axes the 
predicted breed. Heatmaps were constructed using the R36 package ComplexHeatmap38.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7346  | https://doi.org/10.1038/s41598-022-10698-8

www.nature.com/scientificreports/

Studying genetic diversity is essential for the characterization of indigenous animal populations and can be 
used for conservation policies and promotion of local breeds. To support local pig farming, the TREASURE 
project joined researchers from nine countries and twenty-four research institutes to collect data from twenty 
European indigenous breeds. Previous genomic analyses of the aforementioned breeds were focused on link-
age disequilibrium analysis and selection signatures detection using genome-wide SNP markers12, as well as 
genome sequencing data40. Studies on genetic diversity have also been performed, whether based on a candidate 
genes approach41 or a runs of homozygosity method42. The present work complements these studies by further 
investigating the proportion of ancestry shared among these breeds, together with three of the most representa-
tive commercial breeds as well as a joined dataset of Wild Boar, originating from nine countries. To address the 
question of potential breed traceability via genomic data, we further investigated the ability to predict the breed 
of origin by SNP markers. Linear discriminant analysis is a widely used methodology, but it lacks efficiency with 
high dimensional data such as genomic data. To overcome this problem, the methodology of linear discriminant 
analysis on a reduced dimensionality space, consisting of few principal components derived from SNP, was used.

PCA and admixture results were generally in agreement with high within-breed variability observed for the 
Sarda, Nero Siciliano and the Moravka, while Duroc and Mora Romagnola were the breeds that diverged most 
from the rest. Furthermore, unique ancestries were detected with both approaches for the Alentejana, Iberian, 
Basque, Duroc, Gascon and Mora Romagnola. Regarding Mora Romagnola, PCA and DAPC analyses showed 
contradictory results compared to previous study using candidate genes approach41. To explain this, it can be 
hypothesized that in a population such as Mora Romagnola, characterized by a low number of individuals and 
high level of inbreeding, there may be different response when investigating loci under selective pressure com-
pared to neutral loci.

Nevertheless, slight differences among the PCA and admixture were also observed. For instance, the PCA 
scatterplot of the first two axes (Fig. 1a) clustered Turopolje close to Alentejana and Iberian; however, admixture 
analysis showed that ancestries were shared with Black Slavonian, Cinta Senese and Sarda (Fig. 2b, Table S2).

Regarding the closeness of some local with the cosmopolitan breeds as revealed by PCA (i.e., Duroc with 
Mora Romagnola; Large White with Lithuanian White Old Type), the reason for this could be the sharing some 
parts of the genome linked to phenotypic characteristics and origin of Lithuanian White pigs; however, the 
amount of variability explained by the first PCs is largely limited with respect to the overall genetic variability 
possessed by populations in the entire dataset. Moreover, although in PCA based on the scatterplot of the first 
two PCs (Fig. 1a) Duroc and Mora Romagnola were closely placed, the two breeds had common ancestries close 
to zero (Fig. 2b, Table S2).

Admixture analysis revealed common ancestries shared between some indigenous and the commercial breeds. 
More precisely, Duroc shared ancestries mainly with Cinta Senese, Iberian and Sarda; Landrace with Bísara, 
Moravka, Nero Siciliano and Sarda; and Large White with Lithuanian White Old Type, Nero Siciliano, Sarda, 
and Lithuanian Indigenous Wattle. Regarding Wild Boars, our dataset consisted of a set of 51 samples from seven 
European countries, Tunisia, and Russia, to capture as much variability and to avoid country-specific bias. Indeed, 
a recent study investigating the history of the domesticated European pigs indicated an interbreeding between 
the local pig breeds and Wild Boars43. Previous analysis on the same local breeds reported a close relationship, 
based on neighbour-joining tree constructed with Nei’s distances, between the Wild Boar and Alentejana and 
Iberian breeds12. In our analysis, introgression of Wild Boar was also found, besides the two aforementioned 
breeds, for the Italian breeds Nero Siciliano and Sarda. Common features between the PCA, admixture and the 
un-supervised DAPC were also observed, as explained below.

The un-supervised DAPC method could represent a real lab scenario for testing the “blind” or external to TRN 
set samples. In the un-supervised DAPC, many of the breeds, except Alentejana, Iberian, Black Slavonian, Cinta 
Senese, Lithuanian Wild Old Type and Turopolje, were mainly assigned as Sarda. This is not surprising, given 
the high admixture level of the Sarda breed. Black Slavonian was assigned to Cinta Senese in 76% of the cases, 
while Cinta Senese was predicted as Black Slavonian with 96% rate. Similarly, in the admixture analysis ~ 7.5% 
of the Black Slavonian was shared with Cinta Senese, while Turopolje was classified as Black Slavonian (100%). 
Interestingly, in the admixture analysis, Turopolje was assigned to two major ancestral groups sharing com-
mon ancestries mainly with Black Slavonian (Table S2). Regarding Lithuanian White Old Type, ancestries were 
mainly shared with Sarda (~ 6%), Lithuanian Indigenous Wattle (~ 5%) and Large White (~ 4.5%), so it would be 
expected to be predicted as Sarda. Nevertheless, the breed was assigned to a large extent to Large White (86%) 
followed by Sarda (~ 12%).

A second objective was to study traceability of pigs based on genome-wide SNP data. To resemble a practi-
cal application, the efficiency of the DAPC method was evaluated using an external validation. Furthermore, 
to assess the effect of sample size, the analyses were repeated several times with subsets of the dataset ranging 
from 30 to 90%. Although the correct assignment of the breeds was > 90% in all subsets, the variation of the 
correct assignment decreased with increased sample size, indicating a more robust model (Fig. 4). This level of 
correct reassignment of pigs is higher than the one reported by Muñoz et al.41, where there were many breeds 
with percentages of correct reassignment < 80%. Moreover, the actual differences might be even higher, since in 
that analysis an external validation was not considered and the whole data were analysed simultaneously. The 
correct reassignment was further improved for the Moravka, Nero Siciliano and Sarda breeds that had the low-
est values in the DAPC analysis by Muñoz et al.41. However, in that study only a limited number of 39 SNPs in 
candidate genes was used.

Using the complete dataset, the majority of the breeds were correctly assigned to its breed of origin, with the 
exceptions of Black Slavonian, Cinta Senese, Krškopolje, Lithuanian White Old Type, Moravka and Turopolje, 
with the lowest value (86%) being observed for Black Slavonian (Fig. 3). In the case of Black Slavonian, there 
were some cases where animals were classified either as Cinta Senese or Turopolje. This was consistent with the 
shared ancestries found among the breeds, even at a low degree (Table S2). The relation among these breeds 
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was further highlighted with the un-supervised DAPC, in which Black Slavonian was assigned mainly as Cinta 
Senese, followed by Sarda and Turopolje.

It should be noted that discrepancies between our results and previous genomic analyses on the same set of 
breeds were to some extent expected. There are two main reasons for this: (i) we considered three cosmopolitan 
breeds and a more diverse Wild Boar panel compared to Muñoz et al.12 and (ii) a whole-genome analysis was 
conducted compared to the candidate gene approach and the 39 SNP of Muñoz et al.41.

Conclusion
We report a whole genome SNP analysis on admixed ancestries and classification of 20 European indigenous 
pig breeds, together with three commercial breeds and Wild Boars. Our results confirm previous analysis on the 
genomic diversity of the local breeds. Classification results using the 70 K HD porcine SNP chip were reliable 
and robust, hence DAPC could be considered as a potential tool for local pig breed traceability in the future. Our 
results indicate that robustness of the model could further benefit with bigger sample sizes. Nevertheless, cost of 
genotyping might be a limiting factor for a wide scale application. To overcome this limitation, a search for the 
minimum set of SNPs, that could achieve similar results obtained with the medium density SNP chip, could be 
proposed. Indeed, it would be useful to genotype a high proportion of the individuals belonging to the breeds 
with the highest risk of extinction or in any case with a greater risk of introgression from other populations. The 
cost of the set of SNPs is therefore fundamental given that for many of the breeds considered in this study there 
is a limited budget for genotyping. Our results suggest that integration of statistical methodologies to investigate 
genomic variability within and between breeds should be considered. We hope our findings to contribute and 
enhance the indigenous pig farming.

Methods
Animals and genomic data.  Our initial pig genomic data (n = 1,195) were obtained from three sources: 
(i) 20 European indigenous breeds (n = 987) reared in 9 countries (Croatia: Black Slavonian, Turopolje; France: 
Basque, Gascon; Germany: Schwabisch-Hällisches Schwein; Italy: Apulo Calabrese, Casertana, Cinta Senese, 
Mora Romagnola, Nero Siciliano, Sarda; Lithuania: Indigenous Wattle, White Old Type; Portugal: Alentejana, 
Bísara; Serbia: Moravka, Swallow-Bellied Mangalitsa; Slovenia: Krškopolje pig; Spain: Iberian, Majorcan Black), 
and retrieved from the European funded project TREASURE (https://​treas​ure.​kis.​si/). Blood samples were col-
lected from each institution by specialized professionals, following standard guidelines. No interventions with 
animals were applied that would require ethical protocols (according to Directive 2010/63/EU-2010) (more 
details on sampling method can be found in Muñoz et  al.12), (ii) three commercial breeds including Duroc 
(n = 53), Landrace (n = 52) and Large White (n = 52) and (iii) a sample of Wild Boars (n = 51) from Finland, 
Hungary, Italy, Spain, Poland, Russia, The Netherlands, Tunisia, and Greece was carefully selected from the 
Dryad Digital Repository: DOI: 10.5061/dryad.30tk6 (https://​doi.​org/​10.​5061/​dryad.​30tk6)44. Further details 
on the selection of the Wild Boars are provided in the Supplementary Information. In addition, a small Spanish 
Wild Boar sample (n = 7) was also added12. All pigs from the indigenous and the three commercial breeds were 
genotyped with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip containing 68,516 
SNPs. The Wild Boars were genotyped with the Illumina 60 K SNP data45. The merged data contained 42,464 
autosomal SNP. Samples with more than 10% and SNPs with more than 5% of missing values were excluded. The 
final data consisted of 1,186 pigs and 40,364 SNP (Table 1).

Population stratification and ancestry.  Admixture and PCA were used to investigate the data structure 
in terms of distinct populations. The two approaches, are complementary to each other. More precisely, PCA 
produces orthogonal projections of the original data, variance driven (from the highest to the lowest), focusing 
on how different populations are structured (between and within). In contrast, an admixture analysis provides 
the proportions from each of the source populations in each sample, i.e., how the individual samples are related 
to the source populations (ancestries). The PCA was performed in R software36, using the prcomp function, 
while the proportion of mixed ancestry was assessed using the ADMIXTURE 1.22 software46,47. The number of 
ancestries (K) to be retained in admixture (K = 2–24) was evaluated via a fivefold cross-validation (CV) and the 
model with minimum CV error was selected for further analysis. Results were also summarized per breed for 
an easier representation.

Discriminant analysis.  DAPC48 was applied to assess breed traceability, as implemented in the R package 
adegenet36,49,50. DAPC replaces the original SNP data with a small set of principal components (PCs) and then 
applies a linear discriminant analysis on the selected PCs. In this way, DAPC maximizes the differences among 
groups while overlooking at the variability within groups. The number of PCs to be used in the discriminant 
analysis is determined via CV and the targeting function can be either the lowest root mean squared error or 
the highest mean success. To select the best option both methods were evaluated: In brief, data were randomly 
sampled in sets starting from 30% and augmenting by 10% up to the complete dataset, one repetition each, hav-
ing all the breeds represented (stratified sampling), and the overall model assignment accuracy was recorded 
(Table S1). For each set, a tenfold CV was applied, and repeated 30 times, to select the optimum number of PCs 
for the discriminant analysis. On average, minimum prediction error slightly outperformed the highest mean 
success, and this was the option kept in subsequent analysis. It should be noted that according to Jombart49 this 
is also the recommended option.

The objective of DAPC was to represent real case scenarios, i.e., to identify an external individual membership 
to a group (external validation). In such a case, the discriminant function is developed in a training set (TRN) 
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and then applied on genotypes of an external validation set (VAL). The function predict.dapc was used for this 
analysis. Two different approaches were applied:

•	 Scenario 1 (semi-supervised learning). Data were randomly (without replacement) split at 80–20% for the 
TRN-VAL set, and the split was repeated 10 times. Random sampling was conditioned such that all the breeds 
were present in both TRN and VAL sets (stratified sampling).

•	 Scenario 2 (un-supervised learning). Each breed was analysed separately and consisted of the VAL set. In 
this scenario, no pigs of the VAL set were present in the TRN set, hence pigs had to be classified in one of the 
other 23 breeds. The TRN set consisted of pigs from the rest of the 23 remaining breeds, randomly selected 
(without replacement). This procedure was repeated 10 times. Scenario 2 can be seen as a method to assess 
similarity among breeds.

In both scenarios, the design of the DAPC analysis included: (i) tenfold CV for the selection of the optimum 
number of the PCs, (ii) the maximum number of PCs tested was set to 300 and (iii) minimum prediction error 
as the target function for model selection. Results were summarized over the 10 repetitions. Moreover, to assess 
the effect of the sample size and the robustness of the model, the complete dataset was split in sets of 10% increase 
(from 30 up to 100%). The terms (semi/un)-supervised should not be confused with the terminology in machine 
learning. These terms were used to distinguish between the two scenarios of DAPC, and although they are analo-
gous to same terms used in the statistical field of machine learning they are not identical.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its 
supplementary materials. The raw genetic datasets generated during the current study are available from the 
corresponding author on reasonable request. The external Wild Boars sample can be found in Dryad Digital 
Repository: DOI: 10.5061/dryad.30tk6 (https://​doi.​org/​10.​5061/​dryad.​30tk6).
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