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Abstract: The main aim of this research was to study the effect of two sowing times (early and late) on
Fusarium and fumonisin contamination and some yield component traits of two maize hybrids from
the FAO maturity groups 500 (ZP 560) and 600 (ZP 666) within a two-year growing season (2016-2017).
F. verticillioides and F. subglutinans have been identified as Fusarium ear rot (FER) pathogens and
potential producers of B-type fumonisins (FBs), with F. verticillioides as the predominant Fusarium
species in both years. The incidence of F. verticillioides and FB levels were affected by sowing time
and maize hybridity. With early sowing and the mid-maturity hybrid ZP 560, F. verticillioides and
FB contamination were lower than with late sowing and the late-maturity hybrid ZP 666. Yield
parameters also differed significantly between sowing time and maize hybrid treatments. Early
sowing increased ear length (EL), number of grains per ear (NGE), grain weight per ear (GWE), and
grain yield per hectare (GY). The late-maturity hybrid ZP 666 had higher yield component traits
and GY than the mid-maturity hybrid ZP 560. EL, GWE, thousand-grain weight (TGW), and GY
were affected by year. Interactions between sowing times and maize hybrids were highly significant
(p £0.01) for FB level, GWE, and GY. The obtained results indicate the importance of applying early
sowing to achieve high maize grain yields with lower contamination by F. verticillioides and FBs.
Although mid-maturity hybrid ZP 560 and late-maturity hybrid ZP 666 showed significant differences
in terms of levels of F. verticillioides and FB contamination, both were susceptible to F. verticillioides,
with high FB levels. These results should be useful to breeders of maize hybrids to create genotypes
more resistant to these fungal contaminants.

Keywords: sowing time; maize hybrids; Fusarium spp.; fumonisins; yield component traits

1. Introduction

After rice and wheat, maize (Zea mays L.) is the third most important cereal crop
worldwide. It is used for food, feeds, and biofuel production. In Serbia, maize is grown
on 996,527 ha, with an average yield of 7.9 t ha~! and a total production of 7,872,607 tons
in 2020. The total production of maize for fodder in 2020 was 746,926 tons grown on
35,663 ha [1]. Maize diseases deteriorate grain yield and quality. Ear rot is the most
common maize fungal disease caused by Fusarium spp. In Europe, Gibberella ear rot
(red ear rot or red fusariosis) is caused by pathogens of the Fusarium graminearum species
complex (FGSC), with F. graminearum sensu stricto (s.s.) being the most studied [2,3], while
Fusarium ear rot (FER) (pink ear rot or pink fusariosis) is caused by Fusarium species
from the Fusarium fujikuroi species complex (FFSC), primarily by F. verticillioides (Saccardo)
Nirenberg (Gibberella moniliformis (Wineland)) [4,5]. There are several possible pathways of
maize infection. One of the most common is via airborne conidia which mature on the silk.
Entering through the silk, conidia infect the grains, but a low percentage of grains show
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symptoms; they are mostly asymptomatic. Systemic infection through the seeds is another
pathway. From the seeds, the fungus continues to develop in the roots, stem, and cob.
However, the infection of grains via silk is more common than through seeds [6]. Although
simultaneous contamination of maize grains by more than one Fusarium species is common,
F. verticillioides is the predominant species. It is an endophyte that survives for a long time
in the plant. It can be found in both symptomatic and asymptomatic maize grains [7].

Fusarium species produce different mycotoxins (secondary metabolites) affecting the
quality of crops and human and animal health. Fumonisins are major mycotoxins in maize
and maize products [8]. There are more than 15 fumonisin homologs (A, B, C, and P),
among which B-type fumonisins (FBs) are the most abundant. Fumonisin By (FB1), fumon-
isin By (FB;), and fumonisin Bz (FB3) are the most frequent forms. FB; is the most toxic
compound [9]. FBs are secondary metabolites produced by F. verticillioides, F. proliferatum
(Matsushima) Nirenberg, and related species. They were first isolated in 1988 from F. verti-
cillioides (previously known as F. moniliforme Scheldon) [10]. A wide range of mycotoxins
are produced by F. subglutinans (Woll. & Reink.) Nelson, Tousson & Marasas, including
fumonisins [11,12]. Fumonisins can cause acute and chronic diseases in animals and hu-
mans. The International Agency for Research on Cancer (IARC) classified them as human
carcinogens in the 2B group [13]. The crucial enzyme in the biosynthesis of sphingolipids,
lipid components in eukaryotic cell membrane structure, ceramide synthase, is inhibited
by FB; and hydrolyzed FB; [14]. Ingestion of fumonisin-contaminated food can lead to
mycotoxicosis in humans and animals. Some health issues in humans caused by fumon-
isins are esophageal and liver cancers, neural tube defects, growth impairment, and birth
defects. Fumonisins can also be hepatotoxic and nephrotoxic in animals. Animal diseases
caused by fumonisins involve multiple organs (liver, kidneys, lungs, brain, and others) and
include developmental disorders and cancer [15,16]. An equine leukoencephalomalacia
and a porcine pulmonary edema syndrome are caused by high levels of fumonisins in
animal feeds [17,18]. Feed contamination by mycotoxins may cause serious health prob-
lems, economic losses, and reduced livestock productivity. Hence, many countries have
defined maximum levels of main mycotoxins, including FBs, for human food and animal
maize-based feeds. According to European regulations, the maximum permissible levels
of FBs (sum of FB;, and FB,) are 4000 ug kg~! in unprocessed maize and 1000 pg kg~*
for human consumption (Commission Regulation 2007/1126/EC) and 60,000 ug kg ! in
maize and maize products intended for animal feeding (Commission Recommendation
2006/576/EC). Mycotoxin levels in grains are not genetically determined since they are
connected with agricultural cultivation and practice [19].

The occurrence and prevalence of Fusarium spp. and the production of fumonisins
can be affected by climatic conditions. FER epidemics occur commonly in dry years and
are favored by warm, dry weather during a grain-filling stage. Droughts at the beginning
of the growing season and wet weather during pollination and silking stages can favor
the growth of FER causative agents as well as fumonisin synthesis in harvested maize
grain [20,21]. Commercial maize hybrids vary in their susceptibility to Fusarium infection
and fumonisins. There are no hybrids resistant to FER. However, hybrids resistant to insect-
borne diseases may have lower fumonisin levels [22]. The lack of highly resistant hybrids to
fumonisin contamination calls for the application of integrated pest-management strategies.
Many agricultural pre-harvest practices, such as tillage, management of crop residues, crop
rotation, sowing time, plant density, fertilization, insect control, and harvest time, have a
significant impact on Fusarium spp. and fumonisin control [20,23,24]. Few data exist on the
effect of sowing time on Fusarium spp. and fumonisin maize contamination. According to
Blandino et al. [25-27], sowing time has a significant effect on the incidence of Fusarium spp.
and the level of mycotoxins in maize grain. In warm regions, sowing times may be altered
in short-season maize hybrids in order to reduce mycotoxin contamination. Depending
on the locality and weather conditions during the silking period, the sowing time should
be determined so as to reduce the heat stress on maize plants [28]. Blandino et al. [27]
have reported that Fusarium spp. were more prevalent in maize grown in dryland than in



Agriculture 2022, 12, 1042

30f11

optimal moisture conditions. Further, late sowing increased Fusarium infection in maize
grains [27]. Parsons and Munkvold [29] have also stated that maize grain colonization
by E. verticillioides was more severe in dryland than in irrigated plots. In regions with
temperate climates, early sowing time can significantly reduce mycotoxin contamination
in maize grains, but annual climatic changes can reverse it [22]. Given that Serbia is a
leader in producing and exporting maize among the Balkan countries, high-yielding and
high-quality production per unit area is mandatory in modern sustainable maize grain
production. In Serbia, there are no data in the literature on the influence of sowing time on
fungal and mycotoxin maize contamination, so all relevant data are of great importance.
Therefore, the main aim of this research was to assess the effect of two sowing times (early
and late) on the incidence of Fusarium spp. and FB levels in the grain of the two commercial
maize hybrids from the two FAO maturity groups (500 and 600) during two growing
seasons (2016-2017). Certain yield component traits and grain yield were evaluated as well.

2. Materials and Methods
2.1. Field Trials and Treatments

Field trials were conducted at the Institute for Animal Husbandry, Belgrade-Zemun,
Serbia (44°84' N, 20°40" E; 88 m a.s.]) during two growing seasons (2016-2017). The two
maize hybrids, ZP 560 (FAO maturity group 500) and ZP 666 (FAO maturity group 600),
were tested at two sowing times (8 April—early time of sowing and 26 April—late time of
sowing). The hybrids were selected based on their high prevalence in maize production in
the area where the experiment was performed.

The field trials were arranged in a split-split plot design with four replicates. The main
plots were maize hybrids and the subplot treatments were the two sowing times. The total
plot size was 16.8 m?, and the sub-plot sizes were 6 m x 2.8 m, with a 70 cm inter-row
spacing. Every sub-plot consisted of four rows. The soil type was chernozem with 1.41%
CaCO3, >5% soil organic matter, pH 7.8 in KCI, 0.258% total N, 19.08 mg 100 g~ ! of soil
phosphorus, and 17 mg 100 g~ ! of soil potassium. The preceding crop was wheat in both
experimental years. The fertilization with ammonium nitrate 120 kg N ha~! was applied at
the five-leaf to six-leaf maize stages. Pre-emergence and post-emergence herbicides were
used to control weeds.

2.2. Evaluation of Qualitative and Productive Traits of Maize Grain Samples

In early October 2016 and 2017, the maize harvest was performed manually when
the grain moisture content was below 26%. Harvested ears were manually dehusked and
shelled. The sample size was about 2 kg per each sub-plot. Before analyses, maize grain
samples were kept at 4 °C.

According to the previously described method of Krnjaja et al. [30], the incidence of
fungal species was evaluated using 50 maize grains sampled from each replication. Grains
were firstly disinfested in 1% sodium hypochlorite (NaOCl) for 3 min, then rinsed with
sterile distilled water, dried on Whatman filter paper, and plated on potato dextrose-7.5%
salt agar in Petri dishes (5 grains per plate). Incubation of plates was for 14 days at room
temperature. Based on the morphological characteristics of the fungal colonies that grew
around the maize grains, fungal species were identified using fungal keys by Watanabe [31]
and Leslie and Summerell [32]. The appearance and color of the colony, conidiophore
branching, formation of phialide, and presence or absence of micro- and macroconidia,
chlamydospores, sporodochia, etc., were the main criteria for fungal species identification.
The percentage incidence of Fusarium spp. was calculated as the ratio of the number of
grains infected by Fusarium spp. and the total number of grains multiplied by 100.

Maize grain sub-samples of about 200 g from each sub-plot were dried for 72 h at
60 °C, then ground in an analytical mill (IKA Al1, Staufen, Germany) and analysed for
FBs. By enzyme-linked immunosorbent assay (ELISA), using the kit Celer FUMO (Tecna,
Rimini, Italy), FBs in grain samples were quantified according to the assay procedure.
The ground sample was mixed with sodium chloride and 70% methanol and shaken in
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a blender for 3 min. After extraction, the sample was added to a premix microwell with
enzyme-conjugated fumonisin, mixed, and transferred to anti-fumonisin antibody-coated
microwells. Incubation of these microwells was performed in the dark for 10 min at
room temperature. During incubation, fumonisin from the extracted sample and enzyme-
conjugated fumonisin competed to bind with the anti-fumonisin antibody that coated the
microwells. After incubation, microwells were washed three times with buffer to remove
unbound conjugate and non-specific reactants. In washed microwells, the chromogen
solution was added and incubated for 10 min. At that time, the blue color developed from
chromogen as an enzymatic reaction between the bound conjugate with chromogen. The
intensity of the blue color is indirectly proportional to the fumonisin level in the sample. If
the level of fumonisin increases, the intensity of the blue color will decrease. Finally, the
enyzme reaction was stopped by adding an acidic solution, changing the chromogen color
from blue to yellow. The absorbances of microwells were read optically by an ELISA reader
(Biotek EL x 800TM, Winooski, VT, USA) at a short wavelength of 450 nm. The detection
limit for FBs in maize was 0.75 mg kg~

Yield component traits, ear length (EL), number of grains per ear (NGE), grain weight
per ear (GWE), and thousand-grain weight (TGW) were analysed in the grains of ten ears
per each replication. Grain yield (GY) was calculated for 14% ear moisture content from
the two central maize rows in each sub-plot.

2.3. Statistical Analysis

Statistical analysis of experimental data was performed using SPSS software (IBM
SPSS Statistic 20). The effects of two sowing times on Fusarium incidence, FB levels, and
yield parameters in the two maize hybrids were evaluated by ANOVA (analysis of vari-
ance) according to the random block design with four replications. Statistical significance
was determined by the Fisher test (F-test) at p < 0.05 and p < 0.01 levels. In pairwise
comparisons, the treatment means were determined using Tukey’s test at p < 0.05. Pearson
correlations were calculated to evaluate relationships between the investigated parameters.

3. Results
3.1. Climatic Data

Based on the climatic data of the Republic Hydrometeorological Service of Serbia
(Belgrade-Surcin area), in the maize growth period (April-October), the total rainfall
(488.3 mm) and mean relative humidity (RH) (69.6%) were higher, while the mean monthly
temperature was lower (18.5 °C) in 2016 compared to 2017 (337.6 mm, 61.6%, and 19.3 °C).
The mean monthly temperatures during the maize silking in July 2016 and 2017 were
23.6 °C and 25 °C, respectively (Figure 1). These temperatures above 20 °C were very
suitable for maize infection by FER pathogens. High temperatures continued in August
2016 (21.9 °C) and 2017 (25.2 °C). Mean temperatures, mean RH, and total rainfall were
19.2 °C, 60.1 mm, and 68% and 18 °C, 58.2 mm, and 65% during the grain filling and
maturity stages in September 2016 and 2017, respectively (Figure 1).

3.2. Mycological and Fumonisin Analyses

Species within the Fusarium graminearum species complex (FGSC), F. subglutinans, and
F. verticillioides were identified on the maize grains in both years, except for FGSC species
in 2017. F. verticillioides and F. subglutinans belong to the Fusarium fujikuroi species complex
(FFSC) and were potential producers of FBs. F. verticillioides was prevalent in all maize
treatments tested, while FGSC species and F. subglutinans were isolated sporadically with a
low incidence. The significance of the tested factors on the incidence of F. verticillioides and
FB levels is shown in Table 1. The incidence of F. verticillioides and FB levels were signifi-
cantly (p < 0.01) affected by both hybridity and sowing time. In early sowing treatments,
mid-maturity hybrid ZP 560 had lower F. verticillioides incidence and FB levels than late-
maturity hybrid ZP 666. F-values of year x hybrid, year x sowing time, hybrid x sowing
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time, and year x hybrid x sowing time interactions were highly significant (p < 0.01) for
FB levels.
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Figure 1. Mean monthly temperature (°C), total monthly rainfall (mm), and mean relative humidity
(%) during the period April-October in 2016 and 2017 (Belgrade-Surcin area, Serbia).

Table 1. Effects of year, hybrids, and sowing time on the incidence of F. verticillioides and levels of FBs.

Incidence of _1
Factor E verticillioides (%) FBs (ug kg™

Year effect (Y)

2016 22.6 6793.1
2017 19.5 7057.5
F-test ns ns
Hybrid effects (H)

ZP 560 15.1b 5778.7 P
ZP 666 27.04 807192
F-test ** i
Sowing time (ST)

Early 159°P 2397.5b
Late 2622 11,453.12
F-test ** **
Interactions (F-test)

Y xH ns **

Y x ST ns **

H x ST ns o

Y x Hx ST ns **
Mean 21.1 6925.3

Means followed by the same letter are not significantly different by Tukey’s test at p < 0.05. ns, not significant; **,
significant at the 0.01 level of probability.

In addition, saprophytic species of Acremonium, Alternaria, Aspergillus, Cladosporium,
Chaetomium, Nigrospora, Penicillium and Rhizopus genera were also isolated on the maize
grains in both years, except for Chaetomium spp. in 2016 and Cladosporium spp. in 2017
(data not shown).

3.3. Yield Parameters

The effect of the studied factors on the EL, NGE, GWE, TGW, and GY has shown in
Table 2. The sowing time effect was statistically significant (p < 0.01) for EL, NGE, GWE,
and GY, with higher values obtained in early sowing. There was a significant difference
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(p < 0.01) observed between investigated hybrids for EL, NGE, GWE, and GY. The late-
maturity hybrid ZP 666 had higher EL, NGE, GWE and GY than the mid-maturity hybrid
ZP 560. Year effect was significant (p < 0.01) on EL, GWE, TGW, and GY with higher values
in 2016. Significant differences were observed in the interactions between year x hybrid on
EL (p <0.05), NGE (p < 0.01), and GWE (p < 0.05), year x sowing time on EL (p < 0.05),
hybrid x sowing time on GWE and GY (p < 0.01), and year x hybrid x sowing time on EL
and GY (p < 0.01).

Table 2. Effects of year, hybrids, and sowing time on the yield component traits and grain yield.

Factor EL (cm) NGE GWE (g) TGW (g) GY (kg ha™1)
Year effect (Y)

2016 2374 721.4 261.92 396.7 2 12,679.62
2017 21.4P 719.0 160.6 b 2739b 8911.1b
F_test b3 nS k% %% %%
Hybrid effects (H)

ZP 560 220b 695.1b 1929b 334.1 9950.7 b
ZP 666 23.02 745.32 229.62 336.4 11,640.12
F'test *3% *3% *% ns *3%
Sowing time (ST)

Early 2314 733.42 22192 345.8 12,097.0 2
Late 2.1b 707.0b 200.7 b 324.7 9493.8 b
F'test *% * *% ns *%
Interactions (F-test)

YxH * x* * ns ns

Y xST * ns ns ns ns

HxST ns ns x* ns i

Y xHxST ** ns ns ns g

Mean 22,6 720.2 211.3 335.3 10,795.4

EL, Ear length; NGE, Number of grains per ear; GWE, Grain weight per ear; TGW, Thousand-grain weight; GY,
Grain yield per hectare. Means followed by the same letter are not significantly different by Tukey’s test at p < 0.05.
ns, not significant; *, significant at the 0.05 level of probability; **, significant at the 0.01 level of probability.

3.4. Correlational Analyses

A strong positive correlation was determined between the incidence of F. verticilioides
and FB levels (r = 0.60 **). Yield parameters (EL, NGE, GWE, TGW, and GY) were positively
correlated with the incidence of F. verticillioides. Positive correlations between all the yield
parameters (EL, NGE, GWE, TGW, and GY) were observed as well. EL was positively
significantly correlated with GWE (r = 0.86 **), TGW (r = 0.79 **), and GY (r = 0.85 **); NGE
with GY (r = 0.41 *); GWE with TGW (r = 0.88**) and GY (r = 0.86 **); and TGW with GY
(r = 0.69 **). There were positive non-significant correlations between EL and NGE (r = 0.23)
and NGE with GWE (r = 0.29) and TGW (r = 0.05) (data not shown).

4. Discussion

Timely sowing and the use of maize hybrids resistant to FER can be quite effective
agricultural measures for reducing Fusarium and fumonisin contamination. Weather con-
ditions at the beginning of the growing season often determine sowing time. Climatic
factors, such as temperature and precipitation, vary from year to year. Therefore, the period
for the optimal sowing time can be extended. The examinations of more maize hybrids
under different sowing times and climatic conditions can contribute to determining and
recommending high-yielding hybrids less susceptible to ear rot. The purpose of this study,
therefore, was to estimate the effect of sowing time on Fusarium incidence, FB levels, and
some productive traits (EL, NGE, GWE, TGW, and GY) in two maize hybrids (ZP 560 and
ZP 666) during two growing seasons (2016-2017) in Serbia.

In grains of maize hybrids ZP 560 and ZP 666, species within the FGSC, F. subgluti-
nans, and F. verticillioides have been identified. FGSC species were isolated only in 2016,
while potentially FB-producing species, F. verticillioides and F. subglutinans, were isolated
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in both years. F. verticillioides was predominant, with an average incidence of 21.1% for
all treatments tested (Table 1), while FGSC species and F. subglutinans were isolated spo-
radically and with low incidence. This was in line with the results of Aguin et al. [11],
who reported that F. verticillioides was the most commonly isolated species from maize
grains and emphasized that F. verticillioides in association with F. subglutinans is becoming
the dominant species. Similarly, by investigating the effect of sowing time on fungal and
mycotoxin contamination of maize grains, Blandino et al. [26] have established higher grain
infection with F. verticillioides than with F. graminearum strains. In addition, Picot et al. [33]
have established a significantly increased level of DNA of F. verticillioides compared to F.
graminearum strains isolated from maize grains. This was hypothetically explained by the
ability of F. verticillioides to grow in a wide range of temperatures, together with minimum
requirements for water activity in the silking stage. Silva et al. [34] also found F. verticillioides
to be the most prevalent species in maize grains and determined that 95% of strains had
essential genes for the biosynthesis of FBs.

In this study, there were significant effects of sowing time and maize hybridity on the
incidence of F. verticillioides and FB levels. Late sowing treatments were associated with a
significantly higher incidence of F. verticillioides and FB levels in late-maturity hybrid ZP
666. Mid-maturity hybrid ZP 560 had about two times less incidence of F. verticillioides than
ZP 666. Further, FB contamination was about one-and-a-half times lower in ZP 560 than in
ZP 666 (Table 1). This report is in agreement with the published results by Abbas et al. [28],
Blandino et al. [23,26,27], and Parsons and Munkvold [29,35]. Blandino et al. [26] have
reported a significant effect of sowing time on F. verticillioides and FB contamination of
maize grains, with the highest contamination at the latest sowing time. The maize hybrid
effect was significant regarding F. verticillioides infection grains but not FB levels in all of
the three study years [26]. Parsons and Munkvold [35] also demonstrated that FER and FB
contamination depended on year, sowing time, and maize hybridity. According to these
authors, early sowing time treatments had a lower percentage of both FER symptomatic
maize grains and FB levels than late sowing treatments. The hybrids susceptible to FER
showed higher FER and FB contamination of maize grains than resistant ones in all sowing
treatments. These contamination parameters were lower in early sowing than in later
sowing times. Similarly, the early sowing time resulted in lower FB levels in Bt and non-Bt
maize hybrids, with lower FB levels in Bt hybrids [28]. Furthermore, FBs produced by F.
verticillioides and F. proliferatum had significantly higher levels in late sowing time treatments,
especially in maize hybrids with prolonged cycle lengths (FAO maturity group 600) [27].

The year effect was not significant regarding the incidence of F. verticillioides and
FB levels (Table 1). This is in contrast with the results of Blandino et al. [26] and Krn-
jaja et al. [30]. These authors have emphasized that the extraordinary differences in total
rainfall during the reproductive maize stage between the two growing seasons significantly
influenced the incidence of FB-producing Fusarium spp. and FB levels in grains. In this
research, total rainfall and mean air temperature values were approximately the same in
July 2016 (34.7 mm and 23.6 °C) and July 2017 (37.7 mm and 25 °C) (Figure 1) during
the silking stage, which may explain the lack of a significant year effect observed for F.
verticillioides and FB contamination. Similarly, Berardo et al. [36] pointed out that FB levels
in maize grains originating from different growing areas were influenced by some crucial
climatic factors, such as high temperatures during the flowering stage and wet weather
during the maturity stage. Abbas et al. [37] have concluded that minimum air temperature
above 20 °C in the growing season (May-July) was of particular significance for high maize
contamination with FBs stimulating faster fungal growth. Accordingly, favorable weather
conditions in both tested years (Figure 1) contributed to high FB levels in maize grains
(Table 1). Considering all the treatments tested, the mean FB level was 6925.3 ug kg~ !,
which is above the maximum limit set by the European Commission (4000 pg kg~! in
unprocessed maize and 1000 ug kg~! in maize for direct human consumption; Directive
2007/1126/EC).
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Optimal sowing time is one of the most crucial agronomic factors for achieving high
maize yields and ensuring food security. It is determined by different climatic, agroeco-
logical, and environmental conditions. Early sowing and late-maturity hybrid ZP 666
influenced higher yield component traits and grain yield. Grain yield was about 1.7 times
lower in mid-maturity hybrid ZP 560 than in ZP 666, while early sowing treatments had
about 1.3 times more grain yield than late sowing treatments (Table 2). In similar studies,
Baum et al. [38], Liaqat et al. [39], Sab et al. [40], and Ke and Ma [41] have also reported
that early sowing treatments resulted in higher grain yields in late-maturity hybrids than
in early- and mid-maturity hybrids. In addition, Liaqat et al. [39] and Sab et al. [40] have
found an inconsistent effect of interaction between maize hybridity and sowing time for
tested maize growth parameters. Then, Baum et al. [38] pointed out that the effect of hybrid
maturity was lower compared to the sowing time on maize grain yield and phenology,
explaining that hybrid maturity depended on climatic conditions in some of the localities.
Similarly, Djaman et al. [42] have established that late sowing caused decreased maize yield
due to low temperatures during grain filling and physiological maturity stages. In our
research, late sowing caused a reduction in yield parameters due to low rainfall in August
and less grain filling.

The incidence of F. verticillioides was significantly positively correlated with FB levels;
therefore, high FB levels were expected (Table 1). A significant positive correlation between
FER parameters and FB levels was also observed in reports by Presello et al. [43] and
Parsons and Munkvold [29]. The relationship between sowing time and FER parameters
depends on both abiotic and biotic factors, including pests as biological factors. Insect
injuries on maize ears are sites for Fusarium infection, where spores of F. verticillioides
germinate and colonize grain, contributing to FER development.

The tested maize yield parameters were also positively correlated. There were positive
correlations between EL with NGE, GWE, TGW, and GY; GWE and TGW with GY; and
TGW with GY. Similar results were obtained by Tsimba et al. [44], Bonelli et al. [45], and
Zhou et al. [46]. In the present study, there was a higher positive correlation between GWE
and GY than between NGE and GY. However, Tsimba et al. [44] and Bonelli et al. [45]
have emphasized a lower correlation between GWE and GY than between NGE and GY
in late sowing. This was explained by the fact that GWE is more sensitive to climate
variations. Hence, climatic factors associated with sowing time influenced maize grain
weight variations from silking stage to maturity. On the contrary, Coelho et al. [47] have
determined a high positive correlation between NGE with GY regardless of sowing time or
maize hybridity.

Considering the qualitative traits of maize in relation to sowing time tested, early
and late, early sowing was associated with 1.7 and 4.8 times lower F. verticillioides inci-
dence and FB levels in maize grains, respectively. In contrast, yield component traits and
grain yield per hectare were 1.0 (EL), 1.0 (NGE), 1.1 (GWE), and 1.1 (TGW) to 1.3 times
higher, respectively, in early than in late sowing maize treatments (Tables 1 and 2). Early
sowing significantly reduced F. verticillioides and FB contamination of maize and signif-
icantly increased the yield parameters EL, NGE, GWE and GY. This result indicates the
importance of applying early sowing in reducing the risk of fumonisin contamination and
fumonisin-producing Fusarium species, as well as achieving high grain yields in maize
production. Similar results for qualitative characteristics of maize grains have been reported
by Blandino et al. [25-27] and Parsons and Munkvold [29,35] and for productive traits by
Baum et al. [38] and Djaman et al. [42]. Given the results of very high FB levels, relatively
high F. verticillioides incidence in maize grains, and lower yield parameters associated with
late sowing obtained in this study, it could be recommended for maize growers to avoid
late sowing in the region where the field trials were performed. Additionally, late sowing
of late-maturity hybrids is not recommended. Generally, early sowing was associated with
a better quality of maize grains and higher yields per hectare.
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5. Conclusions

Based on the obtained results, sowing time and hybrid susceptibility could be consid-
ered crucial preventive agricultural measures to control FER and FB contamination of maize
grains. These control measures should be mandatory in integrated pest management in
maize. The incidence of F. verticillioides and FB levels were reduced with early sowing and
the mid-maturity hybrid ZP 560. On the other hand, yield parameters were increased with
early sowing and the late-maturity hybrid ZP 666. Although ZP 560 hybrid was less contam-
inated with F. verticillioides and FBs than ZP 666, both hybrids had high FB levels. Fusarium
spore production and mycotoxin contamination are affected by temperature, relative hu-
midity, and water activity. The impact of environmental factors is considered crucial for the
level of contamination. Hence, research on the relationship between Fusarium pathogens,
maize genotypes, and environmental factors must be constant in order to improve maize
protection. In any case, the application of individual measures can be somewhat effective
in reducing grain contaminants, while an integrated pest-management strategy provides
better grain quality and yield, especially under agro-ecological and weather conditions
favorable to the growth of Fusarium spp. Therefore, early sowing and hybrids resistant to
FER and FBs can be recommended for healthy and high-yielding maize production.
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