Moscatelli, Giulia

Link to this page

Authority KeyName Variants
58635e5c-8a86-49ff-a297-e5efb2767af5
  • Moscatelli, Giulia (1)
Projects

Author's Bibliography

Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems

Bovo, Samuele; Ribani, Anisa; Munoz, Maria; Alves, Estefania; Araujo, Jose P.; Bozzi, Riccardo; Čandek-Potokar, Marjeta; Charneca, Rui; Di Palma, Federica; Etherington, Graham; Fernandez, Ana I.; Garcia, Fabian; Garcia-Casco, Juan; Karolyi, Danijel; Gallo, Maurizio; Margeta, Vladimir; Martins, Jose Manuel; Mercat, Marie J.; Moscatelli, Giulia; Nunaz, Yolanda; Quintailla, Raquel; Radović, Čedomir; Razmaite, Violeta; Riquet, Juliette; Savić, Radomir; Schiavo, Giuseppina; Usai, Graziano; Utzeri, Valerio J.; Zimmer, Christoph; Ovilo, Cristina; Fontanesi, Luca

(BMC Publishing, 2020)

TY  - JOUR
AU  - Bovo, Samuele
AU  - Ribani, Anisa
AU  - Munoz, Maria
AU  - Alves, Estefania
AU  - Araujo, Jose P.
AU  - Bozzi, Riccardo
AU  - Čandek-Potokar, Marjeta
AU  - Charneca, Rui
AU  - Di Palma, Federica
AU  - Etherington, Graham
AU  - Fernandez, Ana I.
AU  - Garcia, Fabian
AU  - Garcia-Casco, Juan
AU  - Karolyi, Danijel
AU  - Gallo, Maurizio
AU  - Margeta, Vladimir
AU  - Martins, Jose Manuel
AU  - Mercat, Marie J.
AU  - Moscatelli, Giulia
AU  - Nunaz, Yolanda
AU  - Quintailla, Raquel
AU  - Radović, Čedomir
AU  - Razmaite, Violeta
AU  - Riquet, Juliette
AU  - Savić, Radomir
AU  - Schiavo, Giuseppina
AU  - Usai, Graziano
AU  - Utzeri, Valerio J.
AU  - Zimmer, Christoph
AU  - Ovilo, Cristina
AU  - Fontanesi, Luca
PY  - 2020
UR  - http://r.istocar.bg.ac.rs/handle/123456789/718
AB  - Background: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo‑Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow‑Bellied Mangalitsa, Schwäbisch‑Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole‑genome sequencing data obtained by using a DNA‑pool sequencing approach. Signatures of selection were identified by using a single‑breed approach with two statistics [within‑breed pooled heterozygosity (HP) and fixation index (FST)] and group‑based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars.
Conclusions: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.
PB  - BMC Publishing
T2  - Genetics Selection Evolution
T1  - Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems
VL  - 52
IS  - 33
DO  - doi.org/10.1186/s12711-020-00553-7
ER  - 
@article{
author = "Bovo, Samuele and Ribani, Anisa and Munoz, Maria and Alves, Estefania and Araujo, Jose P. and Bozzi, Riccardo and Čandek-Potokar, Marjeta and Charneca, Rui and Di Palma, Federica and Etherington, Graham and Fernandez, Ana I. and Garcia, Fabian and Garcia-Casco, Juan and Karolyi, Danijel and Gallo, Maurizio and Margeta, Vladimir and Martins, Jose Manuel and Mercat, Marie J. and Moscatelli, Giulia and Nunaz, Yolanda and Quintailla, Raquel and Radović, Čedomir and Razmaite, Violeta and Riquet, Juliette and Savić, Radomir and Schiavo, Giuseppina and Usai, Graziano and Utzeri, Valerio J. and Zimmer, Christoph and Ovilo, Cristina and Fontanesi, Luca",
year = "2020",
abstract = "Background: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo‑Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow‑Bellied Mangalitsa, Schwäbisch‑Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole‑genome sequencing data obtained by using a DNA‑pool sequencing approach. Signatures of selection were identified by using a single‑breed approach with two statistics [within‑breed pooled heterozygosity (HP) and fixation index (FST)] and group‑based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars.
Conclusions: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.",
publisher = "BMC Publishing",
journal = "Genetics Selection Evolution",
title = "Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems",
volume = "52",
number = "33",
doi = "doi.org/10.1186/s12711-020-00553-7"
}
Bovo, S., Ribani, A., Munoz, M., Alves, E., Araujo, J. P., Bozzi, R., Čandek-Potokar, M., Charneca, R., Di Palma, F., Etherington, G., Fernandez, A. I., Garcia, F., Garcia-Casco, J., Karolyi, D., Gallo, M., Margeta, V., Martins, J. M., Mercat, M. J., Moscatelli, G., Nunaz, Y., Quintailla, R., Radović, Č., Razmaite, V., Riquet, J., Savić, R., Schiavo, G., Usai, G., Utzeri, V. J., Zimmer, C., Ovilo, C.,& Fontanesi, L.. (2020). Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. in Genetics Selection Evolution
BMC Publishing., 52(33).
https://doi.org/doi.org/10.1186/s12711-020-00553-7
Bovo S, Ribani A, Munoz M, Alves E, Araujo JP, Bozzi R, Čandek-Potokar M, Charneca R, Di Palma F, Etherington G, Fernandez AI, Garcia F, Garcia-Casco J, Karolyi D, Gallo M, Margeta V, Martins JM, Mercat MJ, Moscatelli G, Nunaz Y, Quintailla R, Radović Č, Razmaite V, Riquet J, Savić R, Schiavo G, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. in Genetics Selection Evolution. 2020;52(33).
doi:doi.org/10.1186/s12711-020-00553-7 .
Bovo, Samuele, Ribani, Anisa, Munoz, Maria, Alves, Estefania, Araujo, Jose P., Bozzi, Riccardo, Čandek-Potokar, Marjeta, Charneca, Rui, Di Palma, Federica, Etherington, Graham, Fernandez, Ana I., Garcia, Fabian, Garcia-Casco, Juan, Karolyi, Danijel, Gallo, Maurizio, Margeta, Vladimir, Martins, Jose Manuel, Mercat, Marie J., Moscatelli, Giulia, Nunaz, Yolanda, Quintailla, Raquel, Radović, Čedomir, Razmaite, Violeta, Riquet, Juliette, Savić, Radomir, Schiavo, Giuseppina, Usai, Graziano, Utzeri, Valerio J., Zimmer, Christoph, Ovilo, Cristina, Fontanesi, Luca, "Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems" in Genetics Selection Evolution, 52, no. 33 (2020),
https://doi.org/doi.org/10.1186/s12711-020-00553-7 . .